
Data Grids and Service-Oriented
Architecture

An Oracle White Paper
Updated November 2008

Data Grids and Service-Oriented Architecture

INTRODUCTION
The increasing rate of change in the modern business environment demands
greater agility in an organization’s technology infrastructure. Service-oriented
architecture (SOA) provides a means of integrating disparate applications within an
enterprise, improving reuse of application logic while eliminating duplication of
production environments. SOA avoids silos of disconnected information that make
it difficult to service customers, meet production demands, and manage large
volumes of information. In addition, it offers the promise of less interdependence
between projects, and as a result, greater responsiveness to business challenges.
Developing an SOA that guarantees service performance, scalable throughput, high
availability, and reliability is both a critical imperative and a huge challenge for
today’s large enterprises. However, SOA poses its own set of challenges to the
underlying middleware infrastructure.

Service-oriented architecture (SOA)
provides a means of integrating disparate

applications within an enterprise,
improving reuse of application logic while

eliminating duplication of production
environments.

A basic principle of SOA is the decoupling of applications and services. This leads
to increased changes to existing applications and services, as well as more frequent
creation of new ones. Supporting many more applications and services—whose
requirements change almost continuously—means more hardware, more
infrastructure software, and more administration. When added to IT’s mandate to
meet stringent business service-level agreements, keep costs low, and implement
environmentally sustainable technologies, these additional support requirements
can stretch IT resources to the limit. To meet all these demands, IT needs to be
able to support rapid application changes, dynamically adjust resource allocation,
and increase the use of shared IT infrastructure. Traditional application
architectures—typically involving islands of large enterprise software, installed or
provisioned on fixed and dedicated hardware stacks—are not keeping up with the
demands of this new world.

Application grid is an emerging architectural approach for middleware
infrastructure that leverages existing technologies as well as new innovations. It
makes infrastructure more flexible and efficient. Because applications and services
rarely hit peak demand at the same time, pooling, sharing, and dynamically
adjusting the allocation of hardware and infrastructure software resources with an
application grid enables IT shops to be agile and efficient.

Data Grids and Service-Oriented Architecture Page 2

An essential component of an application grid is data grid infrastructure. Because
more services and applications now creating, accessing, updating, and deleting
(CRUD) operational data, the ability to establish concurrent control, transactional
integrity, and response performance is more important and more challenging than
ever. Significantly more data is generated with CRUD operations, and the amount
is unpredictable. The ability to dynamically scale the enterprise data repository and
to ensure reliable availability of data services—even when the database reaches full
capacity or becomes unavailable—is critical.

One of the important benefits of an SOA is the opening of legacy applications and
their data stores to much wider use. An associated challenge, however, is that the
legacy asset may not be architected in a way that supports the transactional
demands resulting from that wider use. By providing a buffer against the legacy
data store, a data grid can serve as a caching layer that scales linearly to extreme
levels. IT does not have to rearchitect the legacy asset; the data grid enables IT to
offer broader access with high service levels.

When choosing an SOA strategy, corporations must rely on solutions that ensure
data availability, reliability, performance, and scalability. They must also avoid
“weak link” vulnerabilities that can sabotage SOA strategies. A data grid
infrastructure, built with clustered caching, addresses these concerns. It provides a
framework for improved data access that can create a competitive edge, improve
the financial performance of corporations, and sustain customer loyalty.

This paper looks at the challenges of selecting an SOA strategy, how an SOA can
improve data availability and reliability, and how clustered caching can improve
SOA performance and ensure scalability for very large-scale transaction volumes.

SOA CHALLENGES
The following should be taken into consideration when selecting an SOA strategy:

The Structure of an SOA Environment
In an SOA environment, there are several types of components to consider. In
order of increasing consolidation, these can be grouped into data services, business
services, and business processes. Data services provide consolidated access to data.
Business services contain business logic for specific, well-defined tasks and perform
business transactions via data services. Business processes coordinate multiple
business services within the context of a workflow.

Data Grids and Service-Oriented Architecture Page 3

Figure 1: SOA environments typically comprise three types of components: data services, business

services, and business processes.

Data within an SOA generally falls into one of two categories:

• Conversational state. The conversational state is managed by business
services and processes and corresponds to currently executing operations,
processes, sessions, and workflows.

• Persistent data. Persistent data is managed by data services and is usually
stored in databases.

Consolidation of Data Services Raises Scale and Performance Issues
The role of data services is to provide access to enterprise data by expressing the
data in terms of the business without requiring any external knowledge of how the
data is actually managed. The value of data services lies in the consolidation that
they bring, allowing centralized control of data without the proliferation of data
silos throughout the enterprise. Unfortunately, this centralization also brings
significant scalability and performance challenges. Scalability issues arise when
many business services depend on a single data service, overwhelming back-end
datasources. Performance issues result directly from scalability limitations, because
poorly scaling data services will become bottlenecks and requests to those services
will queue. Performance is also influenced significantly by the granularity of an
SOA data service, which often provides either too little or too much data. Data
services built around a specific use case will provide too much data for simpler use
cases, and more-complex use cases will need more data, resulting in more service
invocations. In either case, performance will be affected, and with application

Data Grids and Service-Oriented Architecture Page 4

service level agreement (SLA) requirements moving toward response times
measured in milliseconds, every data service request can represent a significant
portion of the application response time.

Reliability and Availability Can Be Compromised by Complex
Workflows
Reliability and availability may also be affected. As business services are integrated
into increasingly complex workflows, the added dependencies decrease availability. If
a business process depends on several services, the availability of the process is
actually the product of the weaknesses of all the composed services. For example, if
a business process depends on six services, each of which achieves 99 percent
uptime, the business process itself will have up to a 6 percent downtime. That
translates to as many as 525 hours of unplanned downtime each year.

If a business process depends on six
services, each of which achieves 99

percent uptime, the business process
itself could have up to 6 percent

downtime. That translates to as many as
525 hours of unplanned downtime

each year.

SOA Environments Differ from Traditional User-Centric Applications
Conversational state, such as the hypertext transfer protocol (HTTP) session state
utilized by Web services, is often short-lived, rapidly modified, and repeatedly used.
The life span of the data may be a matter of seconds, spanning a dozen requests,
each of which may need to read or update the data. Moving from traditional user-
centric applications to an SOA environment means that, in addition to users,
machines are now accessing services—at machine speed. This means that the “user
count” increases dramatically while the average “think time” decreases to almost
nothing, causing the maximum sustained request rate to far exceed the original
specification. The result is that technologies that were capable of handling
traditional user loads are almost inevitably crushed by the increased load associated
with an SOA deployment.

Ensuring the reliability and integrity of conversational state is critical, but its rapid
churn rate and transient nature make it particularly difficult to manage by traditional
means. Using database servers is the traditional solution for scalable data services,
but they cannot cost-effectively meet the throughput and latency requirements of
modern large-scale SOA environments. Most in-memory solutions depend on
compromises such as queued (asynchronous) updates, master/slave high-
availability (HA) solutions, and static partitioning to hide scalability issues, all at the
cost of substantially reduced reliability and scalability. Most SOA vendors go as far
as to strongly recommend avoiding stateful services if at all possible, due to these
scaling and performance challenges.

DATA RELIABILITY AND AVAILABILITY IN AN SOA
The stakes for data reliability and availability in mission-critical environments are
high: crucial business decisions, financial results, customer satisfaction, employee
productivity, and a company’s reputation all depend on it.

Data Grids and Service-Oriented Architecture Page 5

SOA Demands High Data Reliability and Availability
Making sure that services have a consistent, coherent view of data is critical to
ensure reliability and availability. Transactionally consistent data services are
essential for scalable, reliable data processing. Products used to manage data must
have data integrity “in their genes,” supporting both optimistic and pessimistic
transactions, synchronous server redundancy, and reliable configurations.

Data-management products for SOA must prioritize availability and reliability over
features, because SOA adoption results in enterprise systems that are more prone to
outage as the number of service-dependencies increases. This is the natural
consequence of compositional complexity and represents an engineering trade-off
resulting from the elimination of application silos. This risk becomes further
pronounced as systems are consolidated, because service interruptions will have an
increasingly greater impact on the organization.

Data-management products for SOA must
prioritize availability and reliability over

features, because SOA adoption results in
enterprise systems that are more prone to

outage as the number of service
dependencies increases.

Eliminating Single Points of Failure
SOA introduces a set of new challenges to the continuous availability of complex
systems, but the solutions for both service and system availability are well understood
and proven. Service availability requires the elimination of all single points of failure
(SPOFs) within a given service and the insulation—to the maximum extent
possible—against failures in the service’s natural dependencies. System availability
requires similar insulation from the failure of services on which the system
depends.

When architecting a service for high availability, it is necessary to ensure that the
service host itself is highly available.

Clustering is accepted as the standard approach to increasing availability, but in a
traditional clustered architecture, adding servers to a cluster will decrease its reliability
even as it increases its availability. There are several reasons for this, including the
likely interruption of service during failover and failback and the increased
incidence of server failures in direct proportion to the total number of servers.

Static Partitioning Does Not Increase Data Availability
To achieve scalability, other solutions use static partitioning across a collection of
primary servers, each with its own dedicated backup server to ensure availability,
but this model is fundamentally crippled:

• Static partitioning makes the service unable to dynamically increase capacity,
meaning that it cannot participate in a capacity-on-demand architecture.

• Static partitioning requires massive overprovisioning to prevent peak loads
from overwhelming the service.

Data Grids and Service-Oriented Architecture Page 6

• Reliance on dedicated backup servers means that the cluster heals much more
slowly—or may not heal at all—when a primary server dies and thus
increases the window of opportunity for catastrophic data loss by allowing an
SPOF to remain within a production environment.

• Static partitioning with dedicated backup tends to make failback processing
much more difficult, if not impossible.

• Using dedicated backups for each of the primary servers can significantly
increase infrastructure costs and doubles the required number of servers by
employing an N+N availability strategy instead of an N+1 strategy.

Clustered Caching Ensures Reliability and Availability
Oracle Coherence is a trusted in-memory data management solution for ensuring
reliability and high availability for Java-based service hosts, such as Java Platform,
Enterprise Edition (Java EE) application servers. It makes sharing and managing
data in a cluster as simple as on a single server. It accomplishes this by coordinating
updates to the data by using clusterwide concurrency control, replicating and
distributing data modifications across the cluster by using the highest-performing
clustered protocol available, and delivering notifications of data modifications to
any servers that request them.

Oracle Coherence is a trusted in-memory
data management solution for ensuring
reliability and high availability for Java-

based service hosts, such as Java
Platform, Enterprise Edition (Java EE)

application servers.

Oracle Coherence, which provides replicated and distributed (partitioned) data
management and caching services on top of a reliable, highly scalable peer-to-peer
clustering protocol, has no SPOFs. It automatically and transparently fails over and
redistributes its clustered data management services when a server becomes
inoperative or is disconnected from the network. When a new server is added or
when a failed server is restarted, it automatically joins the cluster and Oracle
Coherence fails services back to it, transparently redistributing the cluster load.
Oracle Coherence includes network-level fault-tolerance features and transparent
soft-restart capabilities to enable servers to self-heal.

Data Grids and Service-Oriented Architecture Page 7

Figure 2: Caching is used to decouple components, yielding increased performance, throughput, and

reliability.

Without Oracle Coherence, the servers and the service processes that run on those
servers each represent an SPOF. With Oracle Coherence, a service is composed as
an aggregation of all of those service processes on all those servers, achieving
resiliency by redundancy. A well-designed service can survive a machine failure without
any impact on any of the service clients, because Oracle Coherence provides
continuous service availability, even when servers die. When architected with
Oracle Coherence, even a stateful service will survive server failure with no data
loss, missed transactions, or reduction in service availability. Oracle Coherence
provides a fully reliable in-memory data store for the service, transparently
managing server faults, and making it unnecessary for the service logic to deal with
complicated leasing and retry algorithms.

Oracle Coherence provides a fully reliable
in-memory data store for services,

transparently managing server faults and
making it unnecessary for the service

logic to deal with complicated leasing and
retry algorithms.

The Oracle Coherence dynamic mesh architecture increases reliability and
availability by making failover and failback nearly instantaneous. Oracle Coherence
illustrates the difference between simple high availability and true fault tolerance.
Moreover, Oracle Coherence supports dynamic capacity on demand by expanding
its resilient data fabric to incorporate additional servers as they come online.

Data Grids and Service-Oriented Architecture Page 8

State Management Through Virtualization
Fully stateless services (such as static-content HTTP servers) are very easy to
manage for high availability, but very few services are actually stateless. Many
services manage conversational state, and even those that do not will usually
manage some state, such as caches, internally.

The key to achieving continuous availability and full reliability is to implement
stateful services as if they were stateless by delegating all service state management
to Oracle Coherence. If the service implementation is stateless, server failure will
not be able to cause any loss, thus enabling another server to perform the necessary
service request on behalf of the failed server.

Oracle Coherence provides the resilient and reliable state management on which
these services are built, with true server location transparency and system fault
tolerance. It manages the service state in a manner that completely and dynamically
eliminates SPOFs and single points of bottleneck (SPOBs) and fully virtualizes the
service state across any number of servers.

Transparent Data Partitioning Achieves Continuous Availability and
Reliability
A major factor for service availability is ensuring that any service host can handle
any request at any time. Failing to do this will diminish the ability of the service
cluster to reliably respond to service requests while a failure is occurring. Not
having fully transparent data partitioning means that

• Any delays during failover or failback will reduce reliability.

• Failures will occur during the failover process.

• Failures will occur during failback, if it is possible to fail back at all.

• Each service implementation will have to include custom fault detection and
retry logic to recover from misdirects and redirects.

• Rebalancing after a server failure will be failure-prone or impossible.

• Reliable and dynamic expansion and contraction of the cluster will be
impossible.

Oracle Coherence provides fully transparent data partitioning, and the resulting
service implementations automatically achieve continuous availability and reliability.
No custom fault detection or retry logic is required.

Avoiding Distributed Computing
A key differentiator for clustering products is whether they assume full
responsibility for virtualizing the cluster or delegate the difficult responsibilities
back to the application developer. Support for clustering features such as
transactions, “no lease” data access, and clusterwide locking is critical in enabling
developers to implement cluster-safe services without needing to develop custom

Data Grids and Service-Oriented Architecture Page 9

distributed computing algorithms for each business process. Oracle Coherence
takes responsibility for handling server and network failures.

Failover and Failback
With the increasing complexity of SOA environments, automated and transparent
failover and failback become even more critical. Ensuring that these transitions do
not result in an interruption of service means that applications will be not only
highly available but also highly reliable.

Oracle Coherence is designed for lights-
out and zero-administration environments

and employs self-healing network
capabilities to not only survive failures but

also repair them. Oracle Coherence is designed for lights-out and zero-administration environments
and employs self-healing network capabilities to not only survive failures but also
repair them.

Insulation from Failures in Other Services
Any service that depends on other services must be able to compensate for the lack
of availability of those services. This is particularly critical for services composed of
other services.

The key to preventing failures in one service from affecting another is to
appropriately decouple the two services. For services that support loose coupling,
interposing read-through/write-behind caching between the consuming and
producing services can provide an effective means of isolating reliability issues.

In many cases, it is possible for a service to use write-behind caching to continue
operating—even when an underlying database is unavailable. In such a
configuration, Oracle Coherence will queue the transactions for the database until
the database is brought online and its transaction logs are recovered. This capability
is absolutely crucial for continuously available systems, because system maintenance
is inevitable.

SCALABLE PERFORMANCE VITAL IN SOA
Scalability and performance challenges in a services environment are similar in
many ways to those faced in traditional applications. The less distance and
transformation that is required for using a piece of information, the more efficient
the application will be. However, the scale of the problems has been dramatically
increased. Furthermore, in addition to the traditional challenges related to
conversational state and data access, there is now the added element of increased
“distance” between the various services that are working together to handle each
incoming request.

Enormous Loads Challenge Scalability
Enterprise systems built on an SOA face a host of challenges relating to
unprecedented scale. Request volume is growing in multiple dimensions at once.
There are more requests, more parameters, and more resulting data per request.
Additionally, as business processes become increasingly automated, load can
increase enormously. In financial services, the use of algorithmic trading systems

Data Grids and Service-Oriented Architecture Page 10

has increased load in some cases by several orders of magnitude, and growth is
anticipated to continue at a breakneck pace. Retailers are seeing similar swells from
personalization and closed-loop analytics. The travel and hospitality industries are
working to address the need for real-time pricing and the increased load generated
by third-party inventory engines. Many other industries are experiencing similar
exponential growth in service load.

The most fundamental challenge for large-scale, data-intensive systems is to
provide multipoint access to shared data while preserving a true single system
image (SSI). Oracle Coherence offers fully coherent caching in a clustered
environment, achieving linear scalability on commodity hardware with a fixed
worst-case latency. One of the major strengths of the Oracle Coherence peer-to-
peer architecture is that it enables data to be pushed and/or pulled within a
distributed environment, either on-demand or as the data is updated. It efficiently
and directly moves data to where it is needed without depending on time-based
invalidation or other artificial means of synchronization. This means that services
have the full benefit of instantaneous data access from any server without the
possibility of accidentally obtaining out-of-date data.

The Data Grid Agent feature in Oracle Coherence ensures ultra low transactional
latency without compromising throughput or fault-tolerance. The next step—
platform-portable invocation and data services—is a giant leap in Oracle’s Fusion
Middleware strategy. Together, these capabilities make high-volume, transactionally
consistent data and event streams universally available to business services
throughout the enterprise.

Large Transaction Volumes Handled Without Compromise
Oracle Coherence is well known for its singular ability to handle enormous
transaction volumes (300,000+ transactions per second) for conversational state
without compromising read performance or fault tolerance. Although there are
clustering solutions that support scale-out or high availability, Oracle Coherence
remains the only viable option for applications that need to sustain intense
read/write data access without resorting to non-fault-tolerant techniques such as
asynchronous updates.

Oracle Coherence is well known for its
singular ability to handle enormous

transaction volumes (300,000+
transactions per second) for
conversational state without

compromising read performance or
fault tolerance.

Deployment Flexibility Through the Data Grid
Oracle Coherence enables capacity on demand in two key steps. First, it helps
move conversational state out of the application and into the Oracle Coherence
Data Grid. This enables requests to be routed to any application instance without
the need for manual provisioning of data. Oracle Coherence’s mesh architecture
also means that additional application instances can be started on the fly, without
the need for manual repartitioning of data and with minimal delay, because
application state is already prepared in the data grid. This compares admirably to
products that depend on static partitioning and “buddy” replication for failover.

Data Grids and Service-Oriented Architecture Page 11

Second, the Oracle Coherence Data Grid is designed for lights-out
management/zero administration (LOM/ZA), which provides the ability to expand
and contract Oracle Coherence almost instantaneously in response to changing
demand. The Oracle Coherence mesh architecture becomes increasingly nimble as
the cluster size increases, with rebalancing occurring even faster and server failures
having smaller and smaller impacts.

By shifting state into Oracle Coherence and using Oracle Coherence’s dynamic
mesh architecture to dynamically scale data management, applications can achieve
near-real-time provisioning without risking loss or abortion of requests.

By shifting state into Oracle Coherence
and using Oracle Coherence’s dynamic
mesh architecture to dynamically scale

data management, applications can
achieve near-real-time provisioning

without risking loss or abortion of
requests.

Figure 3: In an SOA environment, state management is the responsibility of the data grid, which easily

and cost-effectively scales data access far beyond what can be achieved with a database and also

delivers significantly better scalable performance and data integrity for conversational state. At the

same time, the data grid results in a substantial increase in deployment agility.

Web Services Require Scalable Performance
SOAs and Web services in general exhibit the same requirements for scalable
performance as any other line-of-business or outward-facing application. In the
same way that advanced Web applications manage HTTP sessions to provide
conversational state on the server on behalf of the user, Web services and other
SOA infrastructures often have to implement stateful conversations and workflow.
In fact, many Web services implementations simply use HTTP sessions.

Data Grids and Service-Oriented Architecture Page 12

On a request-by-request basis, the data access requirements for Web services
appear to be significantly higher than for Web applications, due to the nature of
Web services, in which ancillary data is often included to eliminate the need for
subsequent requests. In some cases, the request volumes are also significantly
higher and growing at a much higher rate, largely because the service clients are no
longer humans impeded by think time.

CONCLUSION
Clustered caching and data grid infrastructures ensure availability, reliability, and
scalable performance for SOA. SOA environments are adopting these two
technologies much more rapidly than earlier architectures, due to their combined
value. As the recognized market leader in clustered caching, Oracle has been at the
forefront of making SOA a reality, with Oracle Coherence already powering many
of the world’s largest and most demanding SOA environments.

Data Grids and Service-Oriented Architecture Page 13

Data Grids and Service-Oriented Architecture
Updated November 2008
Author: Jonathan Purdy

Oracle Corporation
World Headquarters
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
oracle.com

Copyright © 2007, 2008 Oracle. All rights reserved.
This document is provided for information purposes only and the
contents hereof are subject to change without notice.
This document is not warranted to be error-free, nor subject to any
other warranties or conditions, whether expressed orally or implied
in law, including implied warranties and conditions of merchantability
or fitness for a particular purpose. We specifically disclaim any
liability with respect to this document and no contractual obligations
are formed either directly or indirectly by this document. This document
may not be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without our prior written permission.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.

