
PrepLogic Whitepapers | www.preplogic.com 1

First the Basics
Binary Arithmetic

If you understand how binary numbers work, you can skip this
section and go to the next. But, if you don’t, you need to spend a
bit of time here to get a basic understanding of binary numbering.

All numbering systems work the same way. The one we are most
familiar with, Base 10 (decimal), works the same way as Base
2 (Binary) or Base 16 (Hexadecimal) for that matter. Let’s take a
random number, such as 1,234. We know immediately what that
number is. It is so obvious to us that it seems trite to say that
the number is the sum of one thousand plus two hundred plus
thirty plus four. However, we can express this sum in another,
more interesting way:

(1 * 10^3) + (2 * 10^2) + (3 * 10^1) + (4 * 10^0) = 1,234 (The “^”
symbol indicates “raised to the power of”, eg “10^3” means 10
raised to the power of 3, or 10 * 10 * 10)

It should be pretty obvious why we can refer to this number
system as Base 10. We have 10 digits to work with (0 – 9).

Binary (Base 2) numbering is like decimal (Base 10) numbering
except that we have only 2 digits to work with: 0 and 1. Let’s
take a typical binary number, such as 1101. Like Base 10 numbers,
we can express a binary number as a sum of other numbers. In
the case of the example (1101), we can express the number thus:

(1 * 2^3) + (1 * 2^2) + (0 * 2^1) + (1 * 2 ^ 0) = 8 + 4 + 0 + 1 = 13.
(By the way, any number raised to the power of “0” is “1”.)

As with decimal numbers, we can easily internalize a lot of the work we
have to do by looking at the positions of the digits in a particular number.

Take a longer binary number, such as the
octet, 11111101. If you are familiar with
counting in binary you will know immediately
that this number is 253. If you are not familiar with
counting in binary, don’t despair: it is not that hard.
Consider the table below.

2^7 2^6 2^5 2^4 2^3 2^2 2^1 2^0

128 64 32 16 8 4 2 1

1 1 1 1 1 1 0 1

128+ 64 + 32 + 16 + 8 + 4 + 0 + 1 = 253

But there is an even easier way to convert this number to
decimal. We know that the binary number 11111111 is 255 in
decimal (you just have to memorize this). When we look at a
number like 11111101, all we have to do is subtract 2 (in this case)
from 255 to arrive at our decimal conversion, 253.

Although a TCP/IP address is 32 digits long, the address is broken
up into 4 equal groups of 8 digits (4 groups of single bytes) to
make it easier to work with. So, here is a tip for working with
binary numbers in TCP/IP addresses: draw out the first 8 positions
as in the table above. If you use that table, you will be able to
convert any decimal TCP/IP address to binary and vice versa. One
final tip: practice converting binary to decimal and vice versa;
check your results in the Windows calculator in scientific mode.

Calculating Subnet Masks

What are subnet masks and why do we need them? To answer
these two questions, we have to spend a little time discussing
some basics about TCP/IP. A TCP/IP address, such as 172.16.8.1,
is composed of at least two parts: a section that denotes the
network portion of the address and a section that denotes the

www.preplogic.com 1-800-418-6789

PrepLogic Whitepapers | www.preplogic.com 2

host portion of the address. As an analogy, you can think of
a postal address: one part of the address refers to a street;
another part refers to a particular house. In order for the
address to work properly, both parts have to be unique. How
does your computer “know” which portion or the TCP/IP address
represents the network and what portion represents the
hosts? It looks at the subnet mask for the address. The subnet
mask distinguishes the network from the host portion of the
address (e.g., 172.16.8.1/16). Any bits in the address that are
“masked” by the subnet mask will represent the network portion
(172.16.) of the address; the remaining bits represent the host
portion (.8.1) of the address.

When people look at a TCP/IP address, they often think about
the class of address it represents. In our example above, the
IP address 172.16.8.1 is a Class B address. For a Class B
address, the default subnet mask is 255.255.0.0. This simply
means that the first two octets, 172.16, represent the network
portion of the address, and the last two octets represent the
host portion of the address. To determine if an address is a
Class A, Class B, or Class C address and the default subnet
masks for these addresses, you can consult the following table:

First Octet (dec. & binary) Class Subnet Mask

1 - 126 (0xxxxxxx) A 255.0.0.0

128 – 191 (10xxxxxx) B 255.255.0.0

192 – 223 (110xxxxx) C 255.255.255.0

For a Class A address, the first octet represents the network; for
a Class B the first two octets represent the network; and for a
Class C the first 3 octets represent the network. If you keep in
mind our postal address analogy, it should be clear that there
a few “Class A” streets, but a huge number of houses on each
street. There are more “Class B” streets and fewer houses on
each street, and so on.

Let’s go back to our sample TCP/IP address, 172.16.8.1/16.
The default network portion of the address is represented by the
first two octets, which can be expressed as 172.16.0.0/16.
The “/16” represents the number of bits used for the subnet
mask—in this case, it is 16 bits (11111111.11111111.00000
000.00000000 = 255.255.0.0). In fact, it is now standard
practice to refer to all IP addresses this way. We are left with 16
bits to represent the host portion of the address. With 2^16 or
65,536 (give or take one or two) possible address to represent
the hosts on the 172.16.0.0/16 network, we obviously have
lots of room for growth.

But, hold on, that is way too many computers to place on a single
cable. Furthermore, if we put the maximum number of hosts that we
could physically accommodate on an Ethernet cable, we would waste
a lot of addresses. That’s where a custom subnet mask comes into
play. We can borrow bits from the host portion of the address and
use them to represent the network portion of the address. In effect,
what we can do is subdivide our “street” into a number of smaller
“streets”, or subdivide our network into smaller subnets.

Let’s say we decide to use the entire 3rd octet of the address
to extend the number of subnets on our network. I would
use a subnet mask of 255.255.255.0. That would give us
approximately 254 possible networks, each with approximately
254 hosts. (I say approximately because the actual and precise
number of hosts and networks depends on your hardware and
software, but this is a technicality best left to people who
support routers or are studying for their Cisco certifications.)

Given this subnet, a host with an IP address of 172.16.8.1/24
is on a different network from a host with an IP address of
172.16.9.1/24. This means that both hosts need to be
separated by and reachable through a router. If the subnet mask
were 255.255.0.0, both hosts would be on the same network.

AND IP Addresses

Okay, we’ve seen the need to extend the subnet mask, but how does
TCP/IP “know” whether hosts are on the same or different networks?
Whenever a computer is instructed to communicate with another TCP/
IP host, it “ANDs” its address and the destination address with the
subnet mask and compares the result. If the result is the same, the
TCP/IP stack will do an ARP (Address Resolution Protocol) broadcast
to determine the MAC (Media Access Control) address of the network
adaptor of the destination host. Once it has the MAC address of the
adaptor, the computer will start communicating with the host. If,
however, the result of the “ANDing” is different, the source host will
do an ARP for the MAC address of router on the network, which is
usually the configured default gateway. (Of course, your computer
maintains an ARP cache in memory, and it will not do an ARP if it first
finds the information in the ARP cache).

What is “ANDing”? “ANDing” is similar to multiplication, except it
is used for logical operations. There are 4 logical operations we
can perform with binary numbers: AND, OR, XOR (exclusive-or)
and NOT. Here is why “ANDing” is like multiplication. A “0” ANDed
with a “1” results in a “0”. A “1” ANDed with a “1” results in a “1”.

Let’s go back to our sample extended network. A computer
with an IP address of 172.16.8.1/24 is trying to establish
an HTTP session with a computer that has an IP address of
172.16.9.1/24. The question we need to answer is: Are these
computers on the same or a different network?

Let’s look at the subnet mask of the source computer. It is
using 24 bits as the subnet mask, which can be expressed as
255.255.255.0 or as 11111111.1111111.11111111.0.
To determine if the two computers are on the same or a
different network, your TCP/IP stack will AND 172.16.8.1 and
172.16.9.1 with 255.255.255.0. We need only consider
the third octet. We don’t have to consider the first two octets
because they are identical.

8
255
00001000 AND 11111111 = 00001000

9
255
00001001 AND 11111111 = 00001001

PrepLogic Whitepapers | www.preplogic.com 3

Because the result of the AND is different for the source and
host address, the source computer will ARP for the router
interface. Once it has the MAC address for the router, it will start
communicating with it, and the router will send the packets on
to another router or the final destination.

What if our subnet mask were something different, like
255.255.252.0? Given this subnet mask, are these two
machines on the same or a different network? If we AND the
addresses, here is what we get:

8
252
00001000AND 11111100 = 00001000

9
252
00001001 AND 11111100 = 00001000

Because the result of the AND is the same for both addresses,
your TCP/IP stack will assume that the two hosts are on the same
network and do an ARP for the MAC address of the final destination.

As it turns out, ANDing is something a computer is very good
at (it needs ANDing to route packets properly, for example)
Fortunately, though, we don’t have to AND addresses with subnet
masks to determine if hosts are local (on the same network) or
remote (on different networks). There are easier ways to do this,
so easy in fact that you should not have to use a calculator or
software to calculate subnet masks. Calculating subnet masks
needn’t require anything more than your brain and pencil and
paper. In section two we will take a look at a simpler method for
calculating subnet masks.

Learn to Subnet Section Two

Let’s take a look at an example of two hosts on a Class B
network trying to communicate with one another. Let’s assume
the IP address of the source host is 172.16.32.1/16 and the
destination host address is 172.16.64.1/16. Because we
are using the default subnet mask of /16 or 255.255.0.0,
172.16.32.1/16 and 172.16.64.1.16 are on the same
network. As long as there is no change in the network portion
of the address, the two hosts are on the same network. The
network portion of the address is determined by the subnet mask
of 255.255.0.0, which tells the TCP/IP stack that the first two
octets, 172.16.0.0, represent the network portion of the address.
However, what if we need more than one network, perhaps
because we have remote locations or we have more hosts than
we can place on a single cable? It makes sense to sub-divide
the network into smaller networks. What if we needed to create
6 subnets from our larger, single network? In a case like this,
we would need to extend the default subnet mask by borrowing
some of the bits from the host portion of the IP address. To
create at least six subnets from the 172.16.0.0/16 network,
we need to borrow at least 3 bits. So, our subnet mask would be
255.255.224.0. In binary, the subnet mask would look like this:

11111111.11111111.11100000.00000000

As we learned in section one, the TCP/IP stack will AND the
source and the destination IP address with the subnet mask and
compare the results. If the results of the ANDing are the same,
the two hosts are on the same network. If the results of the
ANDing are different, the two hosts are on different networks.

Let’s do the ANDing for 172.16.32.1/19 and 172.16.64.1/19.
We can ignore the first two octets, since they are identical for
both addresses. The octet of interest is the 3rd octet.

32 224 32
00100000 AND 11100000 = 00100000

64 224 64
01000000 AND 11100000 = 01000000

Given a subnet mask of 255.255.224.0, the two hosts are on
different networks. One way you can think about subnet masks
is this: any time there is a change in the bits used to represent
the network portion of the address, you have a separate
network. In the case of a custom subnet mask of 224, we create
at least 6 networks. (I say at least because the actual number
depends on the hardware or the software. This is a rather
technical issue that you needn’t concern yourself with right
now. For the time being, we are going to assume that neither the
network nor the host portion of the address can be all 0’s or all
1’s, as per the original 1985 standard for subnetting, RFC 950.)

Here are the possible network IDs in the 3rd octet for our
255.255.224 subnet mask:

00000000 0 (Normally not allowed according to RFC950)

00100000 32 172.16.32.0/19

01000000 64 172.16.64.0/19

01100000 96 172.16.96.0/19

10000000 128 172.16.128.0/19

10100000 160 172.16.160.0/19

11000000 192 172.16.192.0/19

11100000 224 (Normally not allowed according to RFC950)

Remember, we are dealing only with the 1st 3 left-most bit
positions. A subnet mask of 224 “masks” off these bits to represent
the network. For any two IP addresses, if the values in these bit
positions change, the IP addresses are on different networks. So,
for example 172.16.64.1/19 is on a different network from
172.16.100.1/19. However 172.16.32.1/19 is on the same
network as 132.16.63.254/19. Just write out the 3rd octet
in binary for both numbers. Do the bits representing the network
portion of the change? If the answer is “yes”, then the addresses
are on different networks. If not, the hosts are on the same network.

Let’s go back to our example subnet of 255.255.224.0. Consider
the table representing the possible network IDs above. Notice
any patterns? One pattern that stands out is the difference
between one Network ID and another: the difference is 32. That
is, starting with the first network ID of 172.16.32.0/19, we
increment by 32 in the 3rd octet to arrive at the next network ID
of 172.16.64.0/19 and so on up to 172.16.192.0/19.

PrepLogic Whitepapers | www.preplogic.com 4

Here’s another relationship to consider. Have a look at the
subnet mask expressed in binary.

128 64 32 16 8 4 2 1
1 1 1 0 0 0 0 0 = 128 + 64 + 32 = 224

The value of the lowest order bit for the subnet mask is 32. This is not
a coincidence, if you consider the permutations in the table above.

So, here is a general rule for calculating subnet masks. Use
the low order bit for the subnet mask to determine the starting
network ID for your subnets and the value used to increment
from one network ID to the next. In our example, the value is 32.

Here is another general rule for calculating subnet masks. The
number of bits used to represent the custom subnet can be
used to calculate the number of possible networks. The formula
is this:2^(no. of bits used for subnet) – 2 = number of possible
subnets. So for our example, we used 3 bits to give us (2^3)-2
= 6 networks. We subtract 2 because the all “0” and the all “1”
subnet may or may not be allowed, depending on your hardware
or software. (If your hardware or software supports the all “0”
network, great. Instead of writing me, you can adjust the formula
to suit your circumstances.)

These two rules may be applied to any subnet mask. Consider
the two IP addresses 172.16.32.1/20 and 172.16.40.1/20.
Are these hosts on the same or different network? To determine
this, draw out the bits for the subnet mask.

255 255 240 0
11111111.11111111.11110000.00000000

The value of the low order bit for the subnet mask is 16. 128 64
32 16 8 4 2 1 1 1 1 1 0 0 0 0 = 128 + 64 + 32 + 16 = 240. Here are
the valid network IDs for the 172.16.0.0/20 subnets (excluding the
all “0” and all “1” subnets)

172.16.16.0/16

172.16.32.0/16

172.16.48.0/16

...172.16.224.0/16

Any two hosts between 172.16.32.1/20 and
172.16.47.254/20 are on the same network. So, our two hosts
(172.16.32.1/20 and 172.16.40.1/20) are on the same Any
two hosts between 172.16.32.1/20 and 172.16.47.254/20
are on the same network. So, our two hosts (172.16.32.1/20
and 172.16.40.1/20) are on the same network. However, what
if our subnet mask is /21 (or 255.255.248.0)? Our two hosts
are on different networks. How can we tell this easily? Look at
the low order value for the subnet mask. For a subnet mask of
248, the value is “8”. So, starting at “8” the valid network IDs are
172.16.8.0/21, 172.16.16.0/21, 172.16.24.0/21 and
so on up to 172.16.240.0/21. How many subnets does our
extended mask give us? We borrowed 5 bits from the host portion
of the address; therefore, the possible number of subnets we
create is 2^5 – 2 = 30.

Anytime you are in a situation, such as a Microsoft exam, where
you might have to calculate subnets, draw out this table.

192
224
240
248
252
254

128
1

64
1

32
1

16
1

8
1

4
1

2
1

1
1

Here is how you use the table. Let’s say in an exam situation,
you need to determine if two particular hosts are on the same
or different networks. Let’s take two IP addresses at random,
such as 172.16.36.1/20 and 172.16.43.254/20. The
subnet mask is 20 bits long: 255.255.240.0 (11111111.11
111111.11110000.00000000).Take a look at the low order
bit used for the subnet mask in the 3rd octet. A value of 240
means that the low order bit is 16 (just follow the lines on the
chart). If the low order bit is 16, that means the first network ID
is 172.16.16.0/20, the next is 172.16.32.0/20, followed
by 172.16.48.0/20, and so on. In other words the network ID
starts at x.y.16.0 and increments by 16 for each network. The two
hosts are on the same network.

Let’s take this a little farther. Given a Class B address
of 172.16.0.0/16, how many subnets are created by
extending the subnet mask by 4 bits into the 3rd octet to
255.255.240.0? The answer is 2^4 – 2 = 14. (This number
assumes that our hardware and software do not support the all
“0” or the all “1” subnets.)

How many hosts can we have on each subnet? With a Class B
address and a subnet mask of /20, we have 12 bits left over
to represent the host addresses on each network. Therefore,
the number of addresses on each network is 2^12 – 2 = 4094.
Like our network addresses, we are going to be consistent and
say that the host portion of the address can’t be all 0’s—that
represents the network ID. Nor can the host portion of the
address be all 1’s—that number represents the broadcast address
on the subnet.

What is a valid range of host address on our 172.16.32.0/20
network? Keeping in mind that the host portion of the address
can’t be all 1’s or all 0’s, the valid range of host addresses is
172.16.32.1 – 172.16.47.254. Why do we end at x.y.47.254?
Because the next network ID is x.y.48.0, and we can’t have all 1’s
in the host address, which rules out x.y.47.255.

Let’s look at one last example before we move on. Assume we have
been given a Class C address of 192.168.100.0/24 and need
to create at least two subnets from this address. How many bits
borrowed from the last octet will give us two subnets? 2 bits
(2^2-2=2). Consulting the table above, we see that borrowing
two bits gives us a subnet mask of 255.255.255.192.

PrepLogic Whitepapers | www.preplogic.com 5

Assuming that we can’t use the all 0 or the all 1 subnet, what is
our first network ID? Consulting the table above, we see that the
low order bit for the 192 subnet is 64. Therefore, the first network
ID is 192.168.100.64/26. What is the next network ID for this
subnet mask? Look at the value of the low order bit for the subnet
mask and add that to the first network ID to determine the next
network ID. The next network ID is 192.168.100.128/26.

Now for the tricky part. What are the valid ranges of
host addresses for the subnets of 192.168.100.0/26?
The valid host ranges are 192.168.100.65/26
– 192.168.100.126/26 and 192.168.100.129 –
192.168.100.190/26. If the numbers in the last octet look
a little strange, write them out in binary. Keep in mind that
for host addresses we can’t have all 0s or all 1s in the host
portion of the address. So, for example, 01000000 (or 64) is
an invalid host address because the last 6 positions are 0’s.
Likewise 01111111 (127) is an invalid address because the last 6
positions (the host portion of the address) are all 1’s.

If you practice calculating subnet masks, you will find after a
while it becomes fairly easy, especially if you use the table. You
will also find the table pretty handy for exams where you have to
know subnetting. When you get into the exam booth, write out the
binary table with the subnets. If you want, copy out these simple
rules. The lowest order bit in the subnet mask determines the
starting network ID and the value that you can add to the network
ID to determine the next network ID. To calculate the number of
hosts orthe number of networks, use this formula: 2^(no. of bits)
– 2 = number of hosts/networks. You shouldn’t have all 0s or all 1s
in the network or host portion of the address. Keep in mind that
some hardware/software may create exceptions to this last rule.

That’s it. I think it’s pretty easy, and it sure beats memorizing
tables or performing complicated arithmetic. As a final test of your
ability to subnet, here is one final teaser. What are the first 10
possible subnets for this subnetted network: 172.16.0.0/25?
Hint, the first network ID is 172.16.0.128/25 and there are 2^9
– 2 possible subnets. What are the ranges of valid hostaddresses
for the first few subnets?

CIDR Block Rules or Supernetting Made Easy

You thought we were finished, didn’t you? If your brain hurts
from the previous section, put this aside and come back to
it again. But, do come back. Knowing about CIDR blocks and
supernetting, not to mention Variable Length Subnet Masks
(VLSM), may be important to you someday. Furthermore, none of
these topics is much more difficult than subnetting, if you spend
some time with them.

If you know how to subnet, you know how to supernet, even
though you might not think you can. A supernetted address is
one in which bits are borrowed from the network portion of
the address, rather than the host portion of the address. But,
aside from this difference, the arithmetic works the same for
supernetted addresses as for subnetted addresses.

Where do we use supernetted addresses? Normally, we would
not use supernetted addresses on client computers. Supernetted
addresses are used on routers to aggregate multiple entries in
their routing tables into single entries. Here is how it works. Let’s
say we have a large block of class C networks that is reachable
through a single router, Router A. Router A will advertise to
its neighbor routers that it has routes to a bunch of class C
networks. Let’s say Router A advertises routes for each network
in the range 192.168.8.0/24 – 192.168.15.0/24. In other
words, Router A has 8 individual entries in its routing table.

This is precisely the situation where CIDR blocks can be used.
CIDR stands for Classless InterDomain Routing. Think about
that term for a bit. In the previous section on subnetting, we
dealt with classfull addresses, that is addresses that could be
characterized as Class A, B, or C. With those addresses we cared
(to some extent) what the default subnet mask for a particular
address is. For Classless Interdomain Routing, we really don’t
care about the default subnet mask. All we are interested in is
determining the mask that will allow us to describe a group of
contiguous networks as a single network. In other words we are
going to use the same techniques for supernetting as we used
for subnetting, except we are going to ignore the class of the
addresses we are dealing with and their default subnet mask.

Let’s go back to our example router that contains entries
for 8 routes to networks between 192.168.8.0/24 –
192.168.15.0/24. We want to replace these 8 entries with
a single entry. From the table we used for subnetting, we know
that if we were dealing with a Class B address (instead of a
Class C), we could describe this range of addresses as a single
network with the subnet mask 255.255.248.0. Look at the
difference between 15 and 8 to determine the low order bit for
the mask. Since 8 is the closest value, we know that we need 5
bits in the 3rd octet for the mask (11111000 = 248). It doesn’t
matter that we are dealing with Class C addresses since this
is classless addressing. With CIDR blocks I can now advertise a
route to these 8 networks as a single entry: 192.168.8.0/21.

Not all routers can support CIDR blocks. For a router to support
CIDR blocks, it must also support a routing protocol such as RIP
v 2 or OSPF. Both of these protocols provide information about the
subnet mask when they communicate with other routers. That
not only makes CIDR blocks possible, but it also makes the all “0”
networks possible, along with Variable Length Subnet Masks.

